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Navigating the Code: AQualitative Study of Novice
Programmers’ Perceptions and Utilization of Automated
Feedback for Self-Regulated Learning

KELI LUO, University at Buffalo

This study investigates how novice programming students perceive and utilize automated feedback to support
their self-regulated learning and metacognitive processes. Using a qualitative case study approach, we collected
data from 20 students in an introductory programming course through interviews, think-aloud sessions, and
reflective journals. Our findings reveal diverse perceptions of automated feedback, ranging from helpful tool
to frustrating obstacle. We identified five main utilization strategies: immediate error correction, systematic
debugging, concept reinforcement, progress monitoring, and ignore and continue. The study also found that
automated feedback enhanced self-monitoring, promoted strategic planning, and triggered reflective thinking
for many students, though its impact varied. These results contribute to our understanding of how automated
feedback systems can be designed and implemented to better support students’ self-regulated learning in
programming education.
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1 INTRODUCTION
In recent years, automated feedback systems have become increasingly prevalent in programming
education, offering students immediate guidance on their code submissions. These systems promise
to enhance the learning experience by providing timely, consistent feedback without increasing
instructor workload [10]. However, the effectiveness of such systems depends not only on the
quality of the feedback provided but also on how students perceive and utilize this feedback to
support their learning processes.
Understanding how novice programming students engage with automated feedback is crucial

for several reasons. First, it can inform the design of more effective feedback systems that align
with students’ needs and learning strategies. Second, it can help instructors better support students
in developing self-regulated learning skills, which are essential for success in programming and
beyond [27]. Finally, it can contribute to our broader understanding of how technology can scaffold
metacognitive processes in complex learning domains.
Prior studies have made significant contributions to our understanding of automated feedback

in programming education. For instance, Keuning et al. [11] conducted a systematic review of
automated feedback generation systems, highlighting their potential benefits and limitations. Loksa
and Ko [15] examined the role of self-regulation in programming problem-solving, emphasizing
the importance of metacognitive strategies. However, these studies have primarily focused on the
technical aspects of feedback systems or general self-regulation in programming, leaving a gap in
our understanding of how students specifically interact with and utilize automated feedback to
support their self-regulated learning and metacognitive processes.

To address this gap, our study investigates the research question: How do novice programming
students perceive and utilize automated feedback to support their self-regulated learning and
metacognitive processes while completing programming assignments? By examining this question,
we aim to bridge the technical aspects of automated feedback systems with the psychological
processes involved in learning to program.
Our study contributes to the existing literature in several ways. First, it provides a nuanced

understanding of students’ perceptions of automated feedback, moving beyond simple measures of
satisfaction to explore how these perceptions influence learning behaviors. Second, it identifies
specific strategies that students employ when engaging with automated feedback, offering insights
into how these systems are used in practice. Third, it examines the impact of automated feedback
on students’ self-regulation and metacognitive processes, areas that have been underexplored in
the context of programming education.

To investigate this question, we employed a qualitative case study approach, collecting rich data
through interviews, think-aloud sessions, and reflective journals over the course of a semester-long
introductory programming course. This methodology allowed us to capture the complexity of
students’ experiences and thought processes as they interacted with automated feedback [25].

Our findings reveal diverse perceptions and utilization strategies among novice programmers, as
well as varying impacts on self-regulation and metacognition. These results have important impli-
cations for the design of automated feedback systems and pedagogical approaches in programming
education. By deepening our understanding of how students engage with automated feedback, this
study contributes to the ongoing efforts to improve programming education and support students
in developing crucial self-regulated learning skills.

2 BACKGROUNDS
This literature review explores the intersections of self-regulated learning, metacognition, and
automated feedback in the context of novice programming education. We examine the current
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understanding of these concepts and their applications in computer science education, highlighting
the gaps that our research aims to address.

2.1 Self-Regulated Learning in Programming Education
Self-regulated learning (SRL) has been recognized as a crucial factor in academic success across
various disciplines, including computer science. In the context of programming education, SRL
refers to the process by which students actively monitor and control their cognition, motivation,
and behavior to achieve their learning goals [26].
Falkner et al. [6] identified a set of SRL strategies specific to computer science education, in-

cluding task difficulty assessment, designing before coding, and problem decomposition. Their
study highlighted the importance of explicit instruction in these strategies, particularly for novice
programmers who may not naturally develop effective self-regulation skills.

Further research by Loksa and Ko [16] demonstrated that successful SRL in programming relies
on adequate domain knowledge and that students who engage in more planning and comprehension
monitoring tend to produce code with fewer errors. This underscores the need for interventions
that not only teach programming concepts but also foster the development of SRL skills.

2.2 Metacognition in Novice Programmers
Metacognition, often considered a key component of SRL, involves the awareness and regulation
of one’s own cognitive processes. In programming education, metacognition plays a crucial role in
problem-solving, debugging, and overall learning effectiveness [19].
Loksa et al. [18] investigated novice programmers’ in-situ reflections on their programming

process, revealing that many students struggle with basic metacognitive tasks such as assessing their
own understanding and progress. This finding suggests a need for explicit support in developing
metacognitive skills within programming environments.
Moreover, Arakawa et al. [1] identified specific self-regulated learning struggles that novice

programmers face, including difficulties in task analysis, self-control, and self-reflection. Their
study highlighted the importance of providing targeted support for these metacognitive processes,
especially as students approach assignment deadlines.

2.3 Automated Feedback in Programming Courses
Automated feedback systems have become increasingly prevalent in programming education,
offering scalable solutions for providing timely and consistent feedback to large numbers of
students [8]. These systems typically assess student code submissions against predefined test cases
and provide immediate feedback on correctness and potential errors.
Research by Keuning et al. [12] reviewed various automated feedback generation systems for

programming exercises, categorizing the types of feedback provided and their effectiveness. They
found that while many systems focus on identifying errors, fewer offer guidance on how to proceed
or support higher-level learning strategies. This gap highlights the need for more sophisticated
feedback mechanisms that not only identify issues but also scaffold the learning process.

A study by Qiang et al. [21] explored how the delivery of automated feedback affects knowledge
transfer in programming education. Their findings suggest that the format and timing of feedback
can significantly impact its effectiveness, highlighting the need for careful design of automated
feedback systems to maximize learning outcomes. Building on this, Becker et al. [4] investigated
the landscape of compiler error messages, emphasizing the importance of clear and comprehensible
feedback for novice programmers.
Recent work by Wu et al. [23] examined the effects of automated feedback on students’ self-

regulated learning in introductory programming courses. They found that while automated feedback
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can support SRL processes, its effectiveness varies depending on students’ prior programming
experience and metacognitive skills. This underscores the need for adaptive feedback systems
that can cater to individual student needs. Furthermore, Hundhausen et al. [9] explored the use of
social learning analytics to enhance automated feedback in programming courses. Their approach
combined automated assessment with peer code review, demonstrating the potential for integrating
social learning aspects into automated feedback systems.

2.4 Integration of SRL, Metacognition, and Automated Feedback
While separate bodies of research exist on SRL, metacognition, and automated feedback in pro-
gramming education, fewer studies have examined the intersection of these areas, particularly
from the perspective of novice programmers.

Silva et al. [22] developed a computer-supported collaborative learning environment that incor-
porated scaffolding for both individual and social regulation of learning in programming education.
Their study demonstrated the potential for integrating SRL support into programming environ-
ments but did not specifically focus on the role of automated feedback in this process. Similarly,
Prather et al. [20] investigated the use of metacognitive scaffolding in interpreting programming
problem prompts, showing positive effects on student performance. However, their study did not
explore how students utilize automated feedback as part of their metacognitive processes.
Recent work by Li et al. [13] examined the influence of socially shared regulation on computa-

tional thinking performance in cooperative learning environments. While their study focused on
collaborative aspects, it highlighted the potential for integrating regulatory support into program-
ming tools, including automated feedback systems.

Xie et al. [24] proposed a theory of instruction for introductory programming skills that empha-
sizes the importance of metacognitive support. Their work suggests that automated feedback could
play a crucial role in fostering metacognitive awareness and self-regulation in novice programmers.
In a related vein, Grey and Gordon [7] explored the use of gamified programming tutors to motivate
students in learning to write code. Their approach incorporated elements of automated feedback
and self-regulation, demonstrating the potential for gamification to enhance SRL in programming
education. Despite these advancements, there remains a significant gap in understanding how
novice programmers perceive and utilize automated feedback in relation to their self-regulated
learning and metacognitive processes. Loksa et al. [17] reviewed the state of metacognition and
self-regulation research in programming education, highlighting the need for more integrated
approaches that combine automated tools with explicit support for regulatory skills. This gap in
the literature underscores the importance of our current study, which aims to provide a deeper
understanding of how automated feedback can be leveraged to support SRL and metacognition in
novice programmers. By exploring students’ perceptions and utilization of automated feedback, we
can inform the design of more effective learning environments that foster both programming skills
and self-regulatory abilities.

3 RESEARCH DESIGN
This study aimed to address the following research question: How do novice programming students
perceive and utilize automated feedback to support their self-regulated learning and metacognitive
processes while completing programming assignments?

To investigate this question, we employed a qualitative case study approach. Case studies allow
for in-depth exploration of a phenomenon within its real-world context [25]. This design was
appropriate given our focus on understanding students’ experiences and thought processes related
to automated feedback in an authentic programming course setting.
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3.1 Context and Participants
The study took place in an introductory programming course (CS1) at a large public university in the
northeastern United States. The course taught Python programming and enrolled approximately 200
students, primarily first-year computer science and engineering majors. We recruited 20 students
to participate in the study. Participants were selected using purposeful sampling to ensure a range
of prior programming experience and academic performance levels were represented. The final
sample included 12 male and 8 female students.

3.2 Data Collection
Data was collected over the course of one 15-week semester using multiple qualitative methods.

3.2.1 Semi-structured Interviews. We conducted three 45-60 minute semi-structured interviews
with each participant - at the beginning, middle, and end of the semester. Interview protocols
focused on students’ approaches to programming assignments, their use of automated feedback,
and their metacognitive and self-regulatory processes. Sample questions included:

• How do you typically approach programming assignments in this course?
• What do you do when you receive automated feedback on your code?
• How, if at all, does the automated feedback influence how you think about and regulate your
learning process?

3.2.2 Think-aloud Sessions. Participants completed two think-aloud sessions while working on
course programming assignments. These 60-90 minute sessions took place in weeks 5 and 10 of the
semester. Students were asked to verbalize their thoughts and actions as they coded and interacted
with the automated feedback system. The researcher observed and took detailed field notes.

3.2.3 Reflective Journal Entries. Students completed weekly reflective journal entries responding to
prompts about their programming experiences and use of automated feedback. Prompts included:

• What challenges did you face in your programming assignment this week?
• How did you use the automated feedback? Was it helpful? Why or why not?
• What strategies did you use to monitor and regulate your learning process?

3.3 Data Analysis
Data analysis followed an iterative, inductive approach guided by thematic analysis techniques [5].
The analysis process involved the following steps:

(1) Transcription of all interview and think-aloud recordings
(2) Initial open coding of a subset of data to develop preliminary codes
(3) Development of a codebook with code definitions and examples
(4) Coding of full dataset by two independent coders
(5) Calculation of inter-rater reliability (Cohen’s kappa)
(6) Discussion and consensus on coding discrepancies
(7) Identification of key themes and patterns across the dataset
(8) Development of thematic map to illustrate relationships between themes
(9) Selection of illustrative quotes and examples for each theme

To enhance trustworthiness, we employed several strategies including triangulation of data
sources, member checking with participants, peer debriefing, and maintaining an audit trail of
analysis decisions [14]. The qualitative analysis software NVivo 12 was used to assist with data
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management and coding. Coding focused on identifying students’ perceptions of automated feed-
back, their reported and observed uses of feedback, and their metacognitive and self-regulatory
processes.

4 RESULTS
Our analysis of interview transcripts, think-aloud session notes, and reflective journal entries
revealed several key themes related to how novice programming students perceive and utilize
automated feedback to support their self-regulated learning and metacognitive processes. We
present these findings organized around three main themes: (1) perceptions of automated feedback,
(2) utilization strategies, and (3) impact on self-regulation and metacognition.

4.1 Perceptions of Automated Feedback
Students’ perceptions of the automated feedback system varied, but generally fell into three
categories: helpful tool, frustrating obstacle, or neutral resource. The majority of participants (15
out of 20) viewed the automated feedback as a helpful tool that supported their learning process.
These students appreciated the immediate nature of the feedback and saw it as a way to efficiently
identify and correct errors. For example, one student noted:

"The automated feedback is like having a tutor available 24/7. It helps me catch silly
mistakes quickly and gives me confidence that I’m on the right track." (P7, Interview 2)

A minority of students (3 out of 20) perceived the automated feedback as a frustrating obstacle
to their programming process. These participants often felt that the feedback was too vague or
unhelpful. As one student explained:

"Sometimes the feedback is just cryptic error messages. It doesn’t actually help me
understand what’s wrong or how to fix it. It’s just frustrating." (P12, Interview 3)

The remaining students (2 out of 20) had neutral perceptions of the automated feedback, viewing
it as just another available resource. These students neither strongly appreciated nor disliked the
feedback system.

4.2 Utilization Strategies
Analysis of think-aloud sessions and reflective journals revealed five primary strategies students
employed when utilizing the automated feedback:
(1) Immediate error correction
(2) Systematic debugging
(3) Concept reinforcement
(4) Progress monitoring
(5) Ignore and continue

Table 1 provides an overview of these strategies, including their frequency of use and representative
quotes.

4.3 Impact on Self-Regulation and Metacognition
Our analysis revealed that the automated feedback system influenced students’ self-regulated
learning and metacognitive processes in several ways.
Many students (16 out of 20) reported that the automated feedback enhanced their ability to

monitor their own learning progress. The immediate nature of the feedback allowed them to quickly
identify areas where they needed improvement. As one student explained:
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Strategy Frequency Representative Quote

Immediate error
correction 85%

"As soon as I see an error
in the feedback, I try to fix it
right away." (P3, Think-aloud 1)

Systematic debugging 60%
"I use the feedback to guide
my debugging process. I go through
each error methodically." (P15, Journal Week 7)

Concept reinforcement 45%
"The feedback helps me understand
concepts better. When I get an error,
I go back to my notes to review." (P9, Interview 2)

Progress monitoring 40%
"I use the feedback to track my progress.
It’s satisfying to see the number of errors
decrease." (P18, Think-aloud 2)

Ignore and continue 15%
"Sometimes I just ignore the feedback
and keep coding. I’ll deal with errors
later." (P6, Interview 3)

Table 1. Automated Feedback Utilization Strategies

"The feedback helps me keep track of what I understand and what I don’t. It’s like a
constant check on my learning." (P5, Interview 3)

Some students (12 out of 20) noted that interacting with the automated feedback system encour-
aged them to engage in more strategic planning. These students would use the feedback to inform
their approach to future programming tasks. For example:

"After getting feedback on one assignment, I started planning out my code more
carefully for the next one. I tried to anticipate the kinds of errors the system might
catch." (P14, Journal Week 10)

For about half of the participants (11 out of 20), the automated feedback triggered more reflective
thinking about their programming process. These students would often pause to consider why
they received certain feedback and how it related to their understanding of programming concepts.
One student described this process:

"When I get unexpected feedback, it makes me stop and think. Why did I make that
mistake? What was I thinking? It helps me understand my own thought process better."
(P2, Think-aloud 2)

It’s important to note that for a subset of students (4 out of 20), the automated feedback appeared
to have limited impact on their self-regulation and metacognitive processes. These students tended
to use the feedback in a more superficial way, focusing solely on correcting errors without deeper
reflection.

"I just use the feedback to fix errors. I don’t really think about it beyond that." (P20,
Interview 3)

Overall, our findings suggest that while the majority of students found the automated feedback
system beneficial for supporting their self-regulated learning and metacognitive processes, the
impact varied based on individual perceptions and utilization strategies.
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5 DISCUSSION
This study investigated how novice programming students perceive and utilize automated feedback
to support their self-regulated learning and metacognitive processes. Our findings provide insights
into students’ experiences with automated feedback and its impact on their learning strategies. In
this section, we discuss the implications of our results, connect them to existing literature, and
consider limitations and future directions.

5.1 Perceptions and Utilization of Automated Feedback
Our results revealed diverse perceptions of automated feedback among novice programmers, with
the majority viewing it as a helpful tool. This aligns with previous research by Keuning et al.
[11], who found that students generally appreciate automated feedback in programming courses.
However, our study extends this understanding by identifying a subset of students who perceive
automated feedback as a frustrating obstacle or neutral resource.

The utilization strategies we identified (immediate error correction, systematic debugging, con-
cept reinforcement, progress monitoring, and ignore and continue) demonstrate the varied ways
students engage with automated feedback. These findings support and expand upon the work of
Loksa and Ko [16], who emphasized the importance of problem-solving strategies in program-
ming education. Our results suggest that automated feedback can scaffold these problem-solving
processes, but students’ approaches to using the feedback differ.

Interestingly, we found that some students used automated feedback for concept reinforcement, a
strategy not prominently discussed in previous literature on automated assessment in programming
education [10]. This suggests that automated feedback systems may have untapped potential for
supporting conceptual understanding, not just error correction.

5.2 Impact on Self-Regulation and Metacognition
Our findings indicate that automated feedback can positively influence students’ self-regulated
learning and metacognitive processes, particularly in enhancing self-monitoring and promoting
strategic planning. This aligns with the theoretical framework proposed by Zimmerman [27], which
emphasizes the cyclical nature of self-regulated learning.
The enhancement of self-monitoring through automated feedback is particularly noteworthy.

As Azevedo [3] argued, effective self-monitoring is crucial for successful learning in complex
domains like computer programming. Our results suggest that automated feedback systems can
serve as external monitors, potentially scaffolding students’ development of internal monitoring
skills. However, our observation that some students engaged in more reflective thinking due to
automated feedback while others used it more superficially highlights the variable impact of such
systems. This variability echoes the findings of Arakawa et al. [2], who identified different levels of
metacognitive awareness among programming students. Our study extends this work by linking
these differences specifically to interactions with automated feedback.

5.3 Limitations and Future Directions
While this study provides valuable insights, it has several limitations. First, our sample size was
relatively small and drawn from a single institution, which limits generalizability. Future research
could expand to multiple institutions and larger sample sizes to validate and extend our findings.

Second, our study focused on novice programmers in an introductory course. It would be valuable
to investigate how perceptions and utilization of automated feedback change as students progress in
their programming education. Longitudinal studies could provide insights into this developmental
process.
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Third, while our qualitative approach provided rich data on students’ experiences, it did not
allow us to quantitatively measure the impact of automated feedback on learning outcomes. Future
studies could employ mixed methods approaches to correlate students’ perceptions and utilization
of feedback with their performance in programming tasks. Finally, our study did not explore
the specific features of the automated feedback system that influenced students’ perceptions and
utilization. Future research could investigate how different types of feedback (e.g., more or less
detailed, focusing on different aspects of code) impact students’ engagement and learning processes.

In conclusion, this study contributes to our understanding of how novice programmers engage
with automated feedback and how it impacts their self-regulated learning and metacognitive
processes. These findings can inform the design of more effective automated feedback systems and
pedagogical approaches in programming education.

6 CONCLUSION
This study provides valuable insights into how novice programming students engage with auto-
mated feedback and its impact on their self-regulated learning and metacognitive processes. Our
findings highlight the diverse ways students perceive and utilize automated feedback, as well as
its potential to enhance self-monitoring, strategic planning, and reflective thinking. However, the
variable impact across students underscores the need for tailored approaches in implementing
these systems. Future research should explore how perceptions and utilization strategies evolve
as students progress in their programming education, and investigate the specific features of
automated feedback systems that most effectively support self-regulated learning. By deepening
our understanding of these processes, this study contributes to the ongoing efforts to improve
programming education and support students in developing crucial self-regulated learning skills.
Ultimately, these insights can inform the design of more effective automated feedback systems and
pedagogical approaches, potentially improving learning outcomes and retention in programming
courses.
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