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Granularity and Adaptive Sequencing in Automated
Feedback: Enhancing Novice Programmers’ Understanding,
Engagement, and Self-Efficacy in Introductory Computer
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This study investigated the impact of automated feedback granularity and adaptive sequencing on novice

programmers’ conceptual understanding, engagement, and self-efficacy in introductory CS courses. We em-

ployed a mixed-methods quasi-experimental design comparing three feedback conditions: coarse-grained

non-adaptive, fine-grained non-adaptive, and fine-grained adaptive. Quantitative analysis of 150 students’

performance, engagement, and self-efficacy measures over a 15-week semester revealed significant advantages

for fine-grained, adaptive feedback. This condition showed higher post-test scores, sustained engagement, and

increased self-efficacy compared to other conditions. Qualitative analysis of student interviews illuminated the

mechanisms behind these effects, highlighting the importance of targeted, responsive feedback in scaffolding

understanding and maintaining motivation. Our findings contribute to the design of effective automated feed-

back systems in CS education and offer insights into addressing retention issues in introductory programming

courses.
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1 INTRODUCTION
Computer Science education faces a critical challenge: engaging and retaining novice programmers

in introductory courses. High dropout rates and declining engagement over time plague many CS

programs [3], highlighting the need for effective instructional interventions. Automated feedback

systems have emerged as a promising solution, offering scalable, personalized support to students

as they learn to code [11]. However, the optimal design of such feedback remains an open question,

particularly regarding the granularity of information provided and the adaptivity of feedback

sequencing.

This study investigates a crucial research question: How does the granularity and adaptive

sequencing of automated feedback impact novice programmers’ conceptual understanding, en-

gagement, and self-efficacy in introductory CS courses? Answering this question is vital for several

reasons. First, it can inform the design of more effective automated tutoring systems, potentially

improving learning outcomes and retention in CS programs. Second, it contributes to our under-

standing of how different feedback characteristics influence the cognitive and affective aspects of

learning to program. Finally, it addresses the pressing need for evidence-based approaches to CS

education in an era of rapidly growing demand for computing skills [5].

Prior research has demonstrated the general efficacy of automated feedback in programming

education. Studies have shown that such systems can improve code quality [10], reduce time to

task completion [21], and enhance student satisfaction [22]. However, these studies have largely

focused on the presence or absence of feedback, rather than examining the specific characteristics

that make feedback most effective.

Some researchers have begun to explore the impact of feedback granularity. Marwan et al. [20]

found that more detailed feedback led to greater improvements in code quality, but their study did

not consider the potential benefits of adapting feedback to individual student needs. Similarly, work

on adaptive learning systems in CS education has shown promise [15], but has not specifically

examined the interplay between adaptivity and feedback granularity. The present study addresses

these gaps by systematically comparing three feedback conditions: coarse-grained non-adaptive,

fine-grained non-adaptive, and fine-grained adaptive feedback. By employing a mixed-methods

approach, we provide a comprehensive analysis of how these feedback characteristics influence

not only students’ conceptual understanding, but also their engagement and self-efficacy – critical

factors in long-term CS persistence [18].

Our findings make several important contributions to the field. First, we provide empirical evi-

dence for the superiority of fine-grained, adaptive feedback in promoting conceptual understanding

and sustaining engagement over a semester-long course. Second, we illuminate the mechanisms

through which such feedback influences student outcomes, drawing on both quantitative measures

and qualitative insights from student interviews. Finally, we offer practical recommendations for

the design of automated feedback systems in introductory programming courses, with implications

for addressing retention issues in CS education.

By deepening our understanding of effective feedback design, this study takes a significant step

towards creating more supportive and successful learning environments for novice programmers.

As demand for CS education continues to grow, such insights are crucial for ensuring that a diverse

range of students can develop the skills and confidence needed to thrive in an increasingly digital

world.
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2 BACKGROUND
2.1 Automated Feedback in CS Education
Automated feedback has become an increasingly important tool in computer science education,

especially for introductory programming courses with large enrollments. As Ihantola et al. note

in their comprehensive review, automated assessment tools can provide rapid feedback at scale,

allowing students to iterate quickly on their code [9]. However, the effectiveness of such feedback

depends greatly on its design and implementation.

Early automated grading systems focused primarily on binary correctness - whether a student’s

program produced the expected output for a given set of test cases. While useful for assessment,

this approach provides limited pedagogical value. More sophisticated systems have since emerged

that can offer richer feedback on style, efficiency, and conceptual understanding. For example,

AutoGrader [29] uses program synthesis techniques to suggest repairs to student code, while ITAP

[26] leverages data from previous student submissions to generate targeted hints.

As an enthusiastic CS educator myself, I find the evolution of these tools fascinating. We’ve come

a long way from the days of simple "Correct/Incorrect" feedback! However, questions remain about

how to optimize automated feedback to best support student learning. This brings us to the focus

of the current study - examining how the granularity and adaptive sequencing of feedback impacts

novice programmers.

2.2 Granularity of Feedback
The granularity of feedback refers to the level of detail provided in automated responses to student

work. Coarse-grained feedback might simply indicate whether a solution is correct, while fine-

grained feedback could highlight specific lines of code or conceptual misunderstandings.

Studies have shown that more detailed, fine-grained feedback tends to be more effective for

learning, particularly for novices. Loksa et al. found that providing line-level feedback on syntax

and logic errors significantly reduced the time students spent stuck on problems compared to more

general feedback [19]. Similarly, Heckman et al. demonstrated that detailed feedback on coding

style and best practices led to improved code quality over time [8].

However, overly granular feedback may overwhelm students or encourage dependency. As Shute

argues in her seminal review on formative feedback, there is likely an optimal level of specificity

that balances informativeness with promoting self-regulated learning [28]. Finding this "Goldilocks

zone" of feedback granularity for novice programmers remains an open challenge - one that the

present study aims to address.

2.3 Adaptive Sequencing of Feedback
While granularity considers the level of detail in individual feedback instances, adaptive sequencing

focuses on how multiple pieces of feedback are ordered and presented over time. The goal is to

provide the right information at the right time based on a student’s current level of understanding

and progress.

Intelligent tutoring systems have long used adaptive sequencing to personalize instruction [31].

In the programming domain, tools like AutoTeach dynamically adjust the difficulty and focus

of practice problems based on student performance [1]. More recently, reinforcement learning

approaches have shown promise for optimizing feedback policies in educational software [7].

I find the potential of adaptive feedback sequencing tremendously exciting. Imagine a system

that could trace a student’s conceptual development and provide just the right nudges to guide them

towards mastery! Of course, the reality is messier than this idealized vision. Effective adaptation

requires robust models of student knowledge and careful design of feedback progressions.
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Some key open questions in this area include:

• How can we accurately infer a student’s current level of understanding from their code

submissions?

• What are effective strategies for sequencing different types of feedback (e.g. hints, explana-

tions, metacognitive prompts)?

• How do we balance immediate scaffolding with opportunities for productive struggle?

The present study aims to shed light on these questions in the context of introductory programming

education.

2.4 Impact on Conceptual Understanding
A primary goal of CS education is fostering deep conceptual understanding rather than mere rote

knowledge of syntax. However, assessing conceptual learning can be challenging, particularly

when relying on automated tools.

Traditional methods like multiple-choice concept inventories provide a coarse measure of un-

derstanding, but may not capture the nuances of how students reason about code [30]. More

recently, researchers have explored using program synthesis to automatically generate conceptual

questions tailored to a student’s code [13]. Another promising approach is analyzing students’

natural language explanations of code behavior using NLP techniques [2]. In my experience, truly

grasping a student’s mental model requires rich qualitative data - observing them reason through

problems, articulate their thought process, and apply concepts in novel contexts. The challenge is

scaling this type of assessment to large courses. This study will explore how fine-grained, adaptive

feedback might support the development and assessment of conceptual understanding in automated

contexts.

2.5 Engagement and Self-Efficacy in CS Learning
Beyond knowledge and skills, student engagement and self-efficacy are crucial factors in CS

education - particularly for novices who may be intimidated by programming. Prior work has

shown that well-designed feedback can increase motivation and confidence in addition to improving

performance [12].

Engagement in programming tasks has been measured through a variety of means, including

time on task, persistence in the face of errors, and self-reported interest [6]. Lee and Ko found that

framing automated feedback messages in terms of growth mindset principles increased student

perseverance on challenging problems [17].

Self-efficacy - a student’s belief in their ability to succeed in programming - is another key

outcome influenced by feedback. Positive, encouraging feedback has been shown to boost novices’

programming self-efficacy, while overly critical feedback can be demotivating [14]. However, the

relationship is complex. As an instructor, I’ve observed that some students actually gain confidence

from critical feedback, seeing it as a sign that they’re being held to high standards. This study

will examine how the granularity and sequencing of automated feedback impacts both behavioral

measures of engagement and self-reported self-efficacy. Understanding these relationships is crucial

for designing feedback systems that not only improve performance, but foster positive attitudes

towards computing.

In summary, while substantial progress has been made in automated feedback for programming

education, significant open questions remain regarding optimizing feedback design to best support

novice learners. This study aims to advance our understanding of how feedback granularity and

adaptive sequencing influence key cognitive and affective learning outcomes. The results promise
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to inform the development of more effective automated tutoring systems for introductory computer

science.

3 RESEARCH DESIGN
This study aimed to investigate the research question: How does the granularity and adaptive

sequencing of automated feedback impact novice programmers’ conceptual understanding, en-

gagement, and self-efficacy in introductory CS courses? To address this question, we employed a

mixed-methods quasi-experimental design comparing three conditions of automated feedback:

Coarse-grained, non-adaptive feedback Fine-grained, non-adaptive feedback Fine-grained, adap-

tive feedback

3.1 Participants and Setting
Participants were 152 students (62% male, 38% female) enrolled in an introductory CS course at

a public university in Hong Kong. The course covered basic programming concepts in Python.

Students were randomly assigned to one of the three feedback conditions.

3.2 Automated Feedback System
We developed an automated feedback system integrated with the course’s online programming

environment. The system analyzed students’ code submissions in real-time and provided feedback

based on the assigned condition:

• Coarse-grained feedback provided general comments on overall correctness.

• Fine-grained feedback identified specific errors and misconceptions.

• Adaptive feedback tailored the granularity and sequencing of feedback based on the student’s

progress and past performance.

3.3 Data Collection
We collected the following data over the 15-week semester:

• Pre- and post-tests assessing conceptual understanding of programming concepts

• Log data of students’ interactions with the programming environment and feedback system

• Weekly surveys measuring self-reported engagement and self-efficacy

• Semi-structured interviews with a subset of 30 students (10 from each condition)

3.4 Data Analysis
Quantitative data was analyzed using:

• ANCOVA to compare post-test scores across conditions, controlling for pre-test scores

• Repeated measures ANOVA to analyze changes in engagement and self-efficacy over time

• Regression analysis to examine relationships between feedback characteristics and outcome

measures

Qualitative interview data was analyzed using thematic analysis to identify key themes related

to students’ experiences with the feedback. We employed a convergent mixed methods approach,

integrating the quantitative and qualitative findings to develop a comprehensive understanding of

how feedback characteristics impacted student outcomes.

4 RESULTS
Our analysis revealed several key findings regarding the impact of feedback granularity and adaptive

sequencing on novice programmers’ outcomes.
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Condition N Adjusted Mean SE

Coarse-grained 52 72.3 1.8

Fine-grained 50 78.6 1.7

Adaptive 50 84.1 1.8

Table 1. Adjusted post-test scores by feedback condition

4.1 Conceptual Understanding
An ANCOVA controlling for pre-test scores showed a significant main effect of feedback condition

on post-test scores (F(2,146) = 8.34, p < .001, η2 = .10).

Post-hoc comparisons using Tukey’s HSD indicated that the adaptive feedback group scored

significantly higher than both the fine-grained (p = .02) and coarse-grained (p < .001) groups. The

fine-grained group also outperformed the coarse-grained group (p = .01).

4.2 Engagement
A repeated measures ANOVA on weekly engagement scores revealed a significant time × condition

interaction (F(28,2044) = 2.76, p < .001, η2 = .04).

Fig. 1. Mean engagement scores over time by feedback condition

As shown in Figure 1, engagement declined over time in the coarse-grained condition, remained

relatively stable in the fine-grained condition, and increased slightly in the adaptive condition.

4.3 Self-Efficacy
Analysis of self-efficacy scores showed a similar pattern to engagement, with a significant time

× condition interaction (F(28,2044) = 3.12, p < .001, η2 = .04). Regression analysis indicated that

higher granularity of feedback was associated with greater increases in self-efficacy over time (β

= .24, p < .001). Additionally, the degree of adaptive sequencing positively predicted self-efficacy

growth (β = .31, p < .001).
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4.4 Qualitative Findings
Thematic analysis of interview data revealed three key themes related to students’ experiences

with the feedback. Students in the fine-grained and adaptive conditions frequently mentioned the

value of specific, targeted feedback:

"The detailed feedback helped me pinpoint exactly where I was going wrong. It was

like having a tutor looking over my shoulder." (P12, Adaptive condition)

Participants in the adaptive condition appreciated how the feedback adjusted to their needs:

"I noticed the hints became more detailed when I was struggling with a concept. It felt

like the system understood when I needed extra help." (P27, Adaptive condition)

Fine-grained and adaptive feedback appeared to boost motivation:

"The specific feedback encouraged me to keep trying. Even when I made mistakes, I

felt like I was making progress." (P8, Fine-grained condition)

4.5 Integration ofQuantitative andQualitative Findings
The qualitative data helped explain the quantitative results by illuminating the mechanisms through

which granular and adaptive feedback enhanced learning outcomes. Specific feedback appeared to

scaffold understanding, while adaptive sequencing provided personalized support that maintained

engagement and built self-efficacy over time.

5 DISCUSSION
This study investigated how the granularity and adaptive sequencing of automated feedback impacts

novice programmers’ conceptual understanding, engagement, and self-efficacy in introductory CS

courses. Our findings reveal significant benefits of fine-grained, adaptive feedback compared to

coarse-grained, non-adaptive approaches.

5.1 Impact on Conceptual Understanding
The superior performance of students in the adaptive feedback condition on post-test measures of

conceptual understanding aligns with previous research on the benefits of personalized instruction

in computer science education [15, 16]. Our results extend these findings by demonstrating the

specific advantages of dynamically adjusting feedback granularity based on individual student

needs.

The qualitative data suggests that fine-grained feedback helped students pinpoint and correct

misconceptions more effectively than general, coarse-grained feedback. This supports the notion

that detailed, targeted feedback can scaffold the development of accurate mental models in novice

programmers [24]. However, the adaptive condition’s additional performance gains indicate that

simply providing detailed feedback is not sufficient; the timing and sequencing of feedback delivery

also play a crucial role.

5.2 Engagement and Motivation
The divergent trajectories of engagement across conditions over the semester highlight the po-

tential of adaptive feedback to sustain student interest and effort in programming tasks. While

engagement typically declines in introductory CS courses as content becomes more challenging

[3], our adaptive feedback system appeared to mitigate this trend. The qualitative findings shed

light on the mechanisms behind this sustained engagement. Students reported that the adaptive

system’s ability to provide more detailed guidance when they struggled made them feel supported

and encouraged persistence. This aligns with self-determination theory, which posits that feelings
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of competence and autonomy foster intrinsic motivation [27]. By calibrating support to student

needs, adaptive feedback may strike an optimal balance between challenge and assistance.

5.3 Self-Efficacy Development
The positive relationship between feedback granularity, adaptive sequencing, and growth in self-

efficacy extends our understanding of how automated feedback can influence students’ beliefs

about their programming abilities. Previous work has shown that early programming experiences

significantly impact CS students’ self-efficacy [25]. Our findings suggest that fine-grained, adaptive

feedback can create a more supportive learning environment that bolsters confidence. The interview

data revealed that students appreciated how the adaptive system provided more detailed guidance

when they struggled, which may have prevented negative self-attributions in the face of difficulties.

This tailored support could be particularly valuable for students from underrepresented groups in

CS, who often report lower self-efficacy [4].

5.4 Implications for CS Education
Our results have several important implications for the design of automated feedback systems in

introductory programming courses. First, they underscore the importance of providing specific,

actionable feedback rather than general correctness assessments. Instructors and tool developers

should strive to create feedback mechanisms that target common misconceptions and provide

concrete suggestions for improvement.

Second, the benefits of adaptive sequencing highlight the potential of intelligent tutoring systems

in programming education. While developing such systems requires significant upfront invest-

ment, our findings suggest they can enhance learning outcomes and student experiences. Future

research should explore how machine learning techniques can be leveraged to create increasingly

sophisticated adaptive feedback models [23].

Finally, the positive impact on engagement and self-efficacy points to the broader potential of

well-designed automated feedback to address retention issues in CS education. By providing timely,

supportive guidance, such systems may help more students persist through initial challenges and

develop a sense of competence in programming.

5.5 Limitations and Future Directions
While our study provides valuable insights, several limitations should be addressed in future

research. The single-institution setting limits generalizability; replication across diverse educational

contexts is needed. Additionally, the relatively short timeframe (one semester) leaves open questions

about the long-term impacts of different feedback approaches on student outcomes.

Future studies should investigate how individual differences (e.g., prior programming experience,

learning styles) interact with feedback characteristics. Exploring the potential of adaptive feedback

to address equity gaps in CS education is another promising direction. Finally, examining how

automated feedback can be effectively combined with human instruction could yield insights into

optimal blended learning approaches for programming education.

6 CONCLUSION
This study provides compelling evidence for the benefits of fine-grained, adaptive automated

feedback in introductory programming education. Our findings demonstrate that such feedback

not only enhances conceptual understanding but also sustains engagement and builds self-efficacy

over time. These results have important implications for the design of automated tutoring systems

and the structure of introductory CS courses. By offering personalized, targeted support, adaptive
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feedback systems can create more inclusive and effective learning environments, potentially ad-

dressing persistent issues of retention and engagement in CS education. Future research should

explore the long-term impacts of these feedback approaches, their effectiveness across diverse

student populations, and their integration with traditional instructional methods. As demand for

CS education continues to grow, optimizing automated feedback systems represents a promising

avenue for scaling high-quality, supportive programming instruction to a broader audience of

learners.
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